

HindPhotostat

Hind Photostat & Book Store

IES MASTER Civil Engineering Toppers Handwritten Notes STRENGTH OF MATERIALS

Theory

BY- KANCHAN SIR

- Explanation
- Derivation
- Example
- Shortcuts
- Previous Years Question With Solution

Visit us:-www.hindphotostat.com

Courier Facility All Over India (DTDC & INDIA POST)
Mob-9311989030

HindPhotostat

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX

ESE, GATE, PSU BEST QUALITY TOPPER HAND WRITTEN NOTES MINIMUM PRICE AVAILABLE @ OUR WEBSITE

- 1. ELECTRONICS ENGINEERING
- 3.MECHANICAL ENGINEERING
- **5.INSTRUMENTION ENGINEERING**
- 2. ELECTRICAL ENGINEERING
- 4. CIVIL ENGINEERING
- 6. COMPUTER SCIENCE

IES, GATE, PSU TEST SERIES AVAILABLE @ OUR WEBSITE

- **❖ IES PRELIMS & MAINS**
- **GATE**
- > NOTE;- ALL ENGINEERING BRANCHS
- > ALL PSUs PREVIOUS YEAR QUESTION PAPER @ OUR WEBSITE

PUBLICATIONS BOOKS -

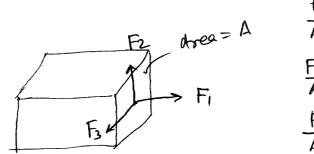
MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX, GATE ACADEMY, ARIHANT, GK
RAKESH YADAV, KD CAMPUS, FOUNDATION, MC-GRAW HILL (TMH), PEARSON...OTHERS

HEAVY DISCOUNTS BOOKS AVAILABLE @ OUR WEBSITE

F230, Lado Sarai New Delhi-110030 Phone: 9311 989 030 Shop No: 46 100 Futa M.G. Rd Near Made Easy Ghitorni, New Delhi-30 Phone:9711475393 F518 Near Kali Maa Mandir Lado Sarai New Delhi-110030 Phone: 9560 163 471 Shop No.7/8 Saidulajab Market Neb Sarai More, Saket, New Delhi-30

Website: www.hindPhotostat.com
Contact Us: 9311 989 030
Courier Facility All Over India
(DTDC & INDIA POST)

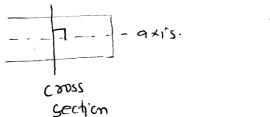
Strength of Materials

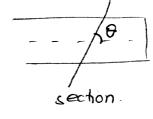

By. Kanchan Thakur

Content

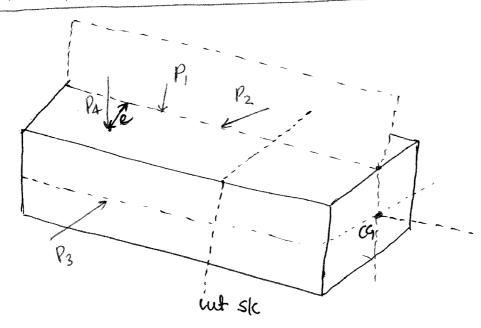
- 1) Properties of materials & Axial stress. ****
- 1) Shear force and bending moment diagram. ****
- 3) Bending stress. ***
- 1 Transverse shear stress ***
- 5 Torsion ***
- 6 Transformation of stress & strain ***
- @ Combined stresses ** Disgrissing
- 8) Thick & Thin cylinder *
- Springs *
- (10) columns *

-> stress develops in a body on account of resistance against the force of deformation.

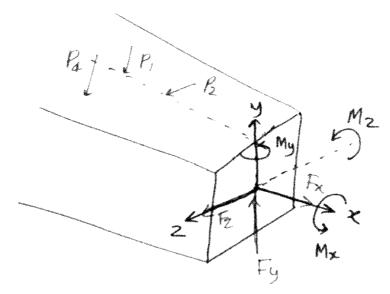

- -> stresses are of two types -
 - 1 Normal stress
 - 1 Shear stress.



$$\frac{F_1}{A}$$
 = normal stress = σ
 $\frac{F_2}{A}$ = shear stress = σ


$$\frac{F_3}{A}$$
 = shear stress = $\frac{C_3}{A}$

.- Normal stress acts perpendicular to the section and shear stress act along the cross section.



External forces & Internal forces:

 \rightarrow P₁, P₂, P₃ & P₄ are external forces applied by some external agent (outside the beam).

- -> Fx, Fy, Fz, and Mx, My, Mz are internal forces.
- > Internal forces developed due to external forces or external effect.
- maximum no. of internal forces at any section under general loading condition is 6. [Fx, Fy, Fz & Mx, My, Me]
- -, A body is said to be in equilibrium if summation of all moment is equal to zero and summation of all

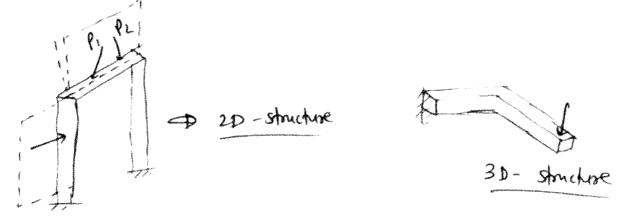
i.e. $\leq (au \text{ forces}) = 0$ } eqm equation. $\leq (aul \text{ moment}) = 0$

- If a body is in equilibrium then every part of the body will also be in equilibrium.
- -> Direction of moment is given by right hand thumb rule.

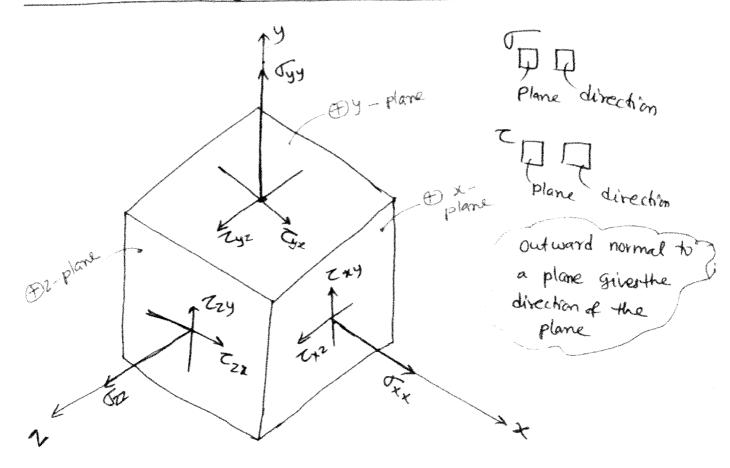
equations: -Shx=0 &Mx =0 2 Fy =0 & My = 0 2 F2=0 & M2 = 0 > Types of force: Fx = Axial force = generates normal stress Called (axial stress Fy, Fz = Transverse shear force. > generales (Transverse shear) stoess Mx = Twisting moment > generales (Torsional shear Stoess My. M2 = Bending moment. > generates normal stress called (Bending stress. -> Under general case of loading different types of internal forces developed are -. axial force . Transverse shear force . Bending moment . Twisting moment - These internal forces will generates two types of stock-· Normal stress · shear stress. -> 2D loading: (all loads are in same plane). Fransverse sheer street. Mz = Bending moment.

Fx = axial force.

-> Under general case of loading we have 6 equilibrium 2


In case of 2D-loading or planar loading maximum no. of internal forces at any section would be 3

They will be - axial force


- . shear force
- · Bending moment.

Noe:

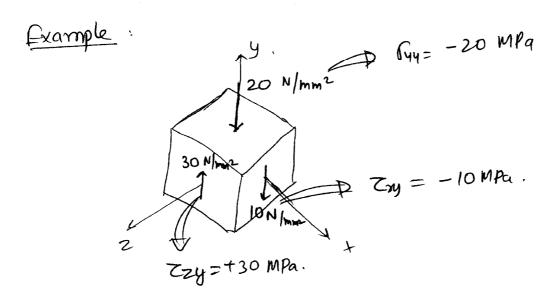
If structure and loading are in same plane then the Structure is said to be 2D-structure.

stresses under general loading condition:

→ At any point under general loading condition no. of stress?

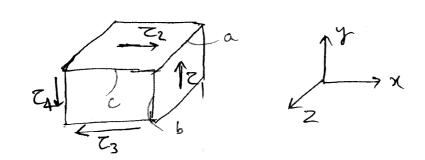
comopents are ③

→ Txx, Tyy, Tzz → normal stress = 3


→ Txy Zyx

Tyz Tzy

→ shear stress = 6


Txz Tzx

Sign convention for stress:

Note:
for normal stresses we can have the sign convention alternatively
given as tensile stress > Ove, compressive stress > Ove

Equality of shear stresses:

Á

$$\leq f_{y}=0 \Rightarrow +: \zeta_{1} \times ab := \zeta_{2} \times ab = 0 \Rightarrow \zeta_{1}=\zeta_{4}$$

 $\leq f_{x}=0 \Rightarrow \zeta_{2}=\zeta_{3}$

$$\Rightarrow \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |z_{j}| = 0$$

- -> Shear stresses on opposite faces of an stress element are equal in magnitude and opposite in direction.

 (This statement is on account of force equilibrium)
- shear stresses on adjacent perpendicular one equal in magnitude and are oriented in such a way that either both of them points towards the junction or they point away from the junction.

(This statement follows from moment equilibrium)

i.e.
$$C_{ny} = C_{yx}$$

 $C_{xz} = C_{zx}$ from moment quilibrium.
 $C_{yz} = C_{zy}$

-> At any point under general loading condition no. of distincts stress components are 6

TXX, Gyy, TZZ, TXY = TYX, TXZ = TZX, TYZ = TZY